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Using techniques developed in our previous publication (Mackaplow et al. 1994), 
we complete a comprehensive set of numerical simulations of the volume-averaged 
stress tensor in a suspension of rigid, non-Brownian slender fibres at zero Reynolds 
number. In our problem formulation, we use slender-body theory to develop a 
set of integral equations to describe the interfibre hydrodynamic interactions at all 
orders. These integral equations are solved for a large number of interacting fibres 
in a periodically extended box. The simulations thus developed are an accurate 
representation of the suspensions at concentrations up to and including the semi- 
dilute regime. Thus, large changes in the suspensions properties can be obtained. 
The rheological properties of suspensions with concentrations ranging from the dilute 
regime, through the dilute/semi-dilute transition, and into the semi-dilute regime, 
are surprisingly well predicted by a dilute theory that takes into account two-body 
interactions. The accuracy of our simulations is verified by their ability to reproduce 
published suspension extensional and shear viscosity data for a variety of fibre 
aspect ratios and orientation distributions, as well as a wide range of suspension 
concentrations. 

1. Introduction 
Suspensions of non-Brownian fibres in a Newtonian suspending fluid occur in many 

industrial applications, such as the production of fibre composites and the pumping 
of pulp slurries. Such suspensions often have complicated rheological properties that 
are quite different from those of the suspending fluid, even when the volume fraction 
of the fibres is very small. For example, a volume fraction of less than 1% can often 
increase the stress by an 0(1) amount beyond that of the fibre-free fluid. This has 
been observed experimentally in filament spinning (Mewis & Metzner 1974; Pittman 
& Bayram 1991), cup-and-plate rheometers (Bibbo 1987), and falling-ball rheometry 
(Milliken et al. 1989), to name but a few investigations. Mewis & Metzner (1974) 
observed values of the effective extensional viscosity which increased by a factor of 
260 with the addition of a very small volume fraction (< 1%) of high-aspect ratio 
fibres. 

Fibre suspensions generally exhibit strongly non-Newtonian behaviour. This can 
be understood by noting that the volume-averaged deviatoric stress tensor, (aD), in a 
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fibre suspension can be written 
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(8) = 2,u ( e )  + n (s) (1) 

where ,u is the viscosity of the suspending fluid, e is the volume-averaged fluid rate of 
strain tensor, n is the particle number density, and (S) is the average particle ‘stresslet’. 
The latter is a symmetric, traceless tensor that is a function of particle shapes, sizes, 
orientations, and centre-of-mass distributions. It will be discussed in more detail in 
$2. In general, for orientable particles, (S) will not have the same tensorial form as 
(e ) .  Therefore, the volume-averaged deviatoric stress tensor of the suspension cannot 
be written merely as 2peff(e), where ,ueff is referred to as the effective viscosity of the 
suspension. 

In addition, the rheological properties of fibre suspensions may change dramatically 
during startup. This is because the instantaneous suspension properties are a strong 
function of the fibre orientation distribution. The orientation distribution evolves 
over time as particles rotate in the mean flow and interact with each other until a 
steady-state distribution is reached. This has been observed experimentally by Bibbo 
(1987). In industrial applications, such as the injection moulding of suspensions, it is 
possible that the suspension will experience a rapidly changing flow field such that 
a steady-state orientation distribution will never be reached. Thus, it is important 
to understand both the development of the orientation distribution and how the 
rheological properties vary as a function of it. We note that the effect of the particle 
orientation distribution on the rheological properties of the suspension is particularly 
important for large particle aspect ratios, as indicated by equation (1 1) below. 

The reason that small volume fractions of fibres can have such large effects on 
the rheological properties of a suspension can be understood by examining the 
theoretical results of Batchelor (1970) for isolated fibres, henceforth referred to as 
the dilute theory. These show that the disturbance to the flow field created by a fibre 
of aspect ratio A is only llln(2A) weaker than a sphere having the same diameter 
as the fibre length. Moreover, the disturbance extends over the same fluid volume. 
Thus, the disturbance per unit particle volume created by a fibre relative to that of a 
sphere is O(A*/ln(A)), which can be quite large even with fibres of moderate aspect 
ratio. However, only the governing equations for suspensions where the fibres are 
not interacting with each other are analytically tractable. Since, as shown by the 
dilute theory, the interaction length of a fibre is determined by its physical length, 
21, fibre interactions can only be neglected when n13 << 1. This is a much more 
restrictive condition than requiring that the volume fraction of inclusions, 4 << 1, 
and the concentration regime where n13 << 1 is referred to as the dilute regime. O(1) 
property changes cannot be obtained in the dilute regime. Thus, the consideration of 
any suspension sufficiently concentrated to be of practical importance must include 
fibre-fibre interactions. 

In his theoretical study of rigid fibres aligned in a viscous flow, Batchelor (1971) 
investigated suspension concentrations up to semi-dilute. This is a concentration 
regime where the average interfibre spacing is much less than the characteristic fibre 
length, 1. Thus there are many fibre-fibre interactions. However, the average closest 
approach distance of any two fibres is much greater than the characteristic fibre width, 
b. To account for fibre-fibre interactions, Batchelor (1971) used a type of cell model 
which assumes that the disturbance created by a fibre would decay, or be ‘screened’, 
on a length of the order of the average interfibre spacing. Dinh & Armstrong (1984) 
extended this approach to determine the evolution of the orientation distributions, 
and thus also the evolution of the stress tensor, in suspensions having arbitrary 
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initial orientation distributions. They postulated that the closest approach distance 
determined the screening length, so that the screening length would differ for aligned 
and isotropic suspensions. Pittman & Bayram (1990) later extended the approach of 
Batchelor (1971) to polydisperse suspensions. 

In their theoretical study, Shaqfeh & Fredrickson (1990) investigated the low- 
Reynolds number hydrodynamic stress in fibre suspensions. They considered suspen- 
sions concentrations up to semi-dilute and used multiple scattering to sum various 
classes of fibre-fibre interactions. The screening length, x, in the suspension was 
found to be 

112 

~ = b  x ( l + O  ( l / l n i ) ) ]  

where is a constant that depends on the fibre shape and orientation distribution. 
If we neglect the weak ln(l/4) part of this expression, this result reduces to the 
same suspension screening length that was originally assumed by Batchelor (1971). 
However, the result of Shaqfeh & Fredrickson (1990) exactly specifies &. It is of 
particular interest that this scaling is predicted not only for the aligned suspensions 
considered by Batchelor (1971), but for isotropic suspensions also. Although the 
average interfibre spacing is approximately the same for both aligned and isotropic 
suspensions, the average distance of closest approach is not. 

Claeys & Brady (1993) have investigated the properties of suspensions of prolate 
spheroids in low-Reynolds-number flow using Stokesian dynamics numerical simu- 
lations. This technique can be used to simulate suspensions at all particle volume 
fractions, since the close particle-particle interactions that are present at higher sus- 
pension concentrations are specifically accounted for through the lubrication forces. 
However, although they have considered aspect ratios up to 50, their system of equa- 
tions and unknowns becomes increasingly ill-conditioned as the fibre aspect ratio 
increases. They noted the surprising result that for isotropic suspensions of aspect 
ratio 50 particles, their simulations showed no evidence of particle interactions for 
suspension concentrations up to n13 m 6,  even though one expects particle interactions 
to have a noticeable effect at such concentrations. Their simulations did show such 
effects for similar values of n13 but only for smaller aspect ratio particles. 

From the foregoing discussion, we see that most previous theoretical predictions 
of the rheological properties of fibre suspensions have relied on cell models. These 
require an ad hoc choice of cell size. The much more rigorous analysis of Shaqfeh 
& Fredrickson (1990) includes only the summation of certain subclasses of fibre 
interactions. Experimentally, it is difficult to get detailed insight into suspension 
rheology, since it is not possible to methodically vary the orientation distribution and 
simultaneously measure all of the components of the stress tensor. Finally, it appears 
that it is difficult for Stokesian dynamics simulations to capture the effect of particle 
interactions for large aspect ratio particles. 

In §2 we formulate a set of integral equations which can be solved to yield the 
full volume-averaged stress tensor for a suspension of rigid fibres in a Newtonian 
fluid. Model suspensions are generated by periodically replicating a finite number 
of fibres in a box throughout space. Slender-body theory is used to represent each 
fibre as a line distribution of Stokeslets along its axis. The Stokeslet distribution 
along each fibre axis is chosen to satisfy the appropriate boundary conditions on 
the surfaces of all of the fibres. This formulation explicitly considers all fibre-fibre 
interactions and is valid for all concentrations up to and including semi-dilute. In 
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addition, our formulation is valid for arbitrary orientation distributions and suffers 
no numerical difficulties at large aspect ratios. This approach is very similar to the 
one used by the present authors to study heat and mass transport in fibre suspensions 
(Mackaplow, Shaqfeh & Schiek 1994). In $3 we discuss our method of solving the 
resulting governing equations. In $4 we briefly review the existing theory for the 
rheology of suspensions of non-Brownian fibres in a Newtonian fluid. 

In $5, we consider both aligned and isotropic fibre suspensions of concentrations 
0.01 < n13 < 15 in a uniaxial extensional flow. We find good agreement with the 
dilute theory for n13 < 1. Beyond the dilute regime, fibre-fibre interactions enhance 
the average particle stresslet significantly. Our results are consistent with the screening 
length of the suspension changing from depending on the fibre length in the dilute 
regime to on the average interfibre spacing in the semi-dilute regime. This is the first 
verification of this prediction of the semi-dilute theory as presented by Shaqfeh & 
Fredrickson (1990). The screening length scaling was found to occur for both aligned 
and isotropic semi-dilute suspensions, again as predicted by Shaqfeh & Fredrickson 
(1990). We also directly verify suspension screening by studying the decay of the 
velocity field created by individual stokeslets. 

Also in 95, we compare our simulations to the experimental data of Weinberger 
(1970), Mewis & Metzner (1974), and Pittman & Bayram (1990), for aligned distri- 
butions, and Bibbo (1987), for both isotropic and steady-state shear distributions. 
We found excellent agreement between the experiments and simulations and further 
support for the concentration scaling of the screening noted above. Finally, in $6 
we provide a concluding discussion of our simulation technique and reiterate the 
important results. We also discuss a straightforward extension of our technique to 
determine the effective mobility of fibres in a sedimenting suspension. 

2. Mathematical formulation of the problem 
We consider a suspension of rigid, non-Brownian particles in a Newtonian fluid. 

When the Reynolds number of the suspension is much less than unity, boundary 
integral methods can be used to represent the disturbance to the flow field due to 
the presence of the particles, vD(x) ,  as an integral of singularities distributed over the 
particle surfaces (Ladyzehnskaya 1963) 

N r n  

d, denotes the surface of particle i, f(x) is the force/area the particle exerts on 
the fluid, and H ( x )  is the Oseen tensor, (l/?mp)(d/Ixl + xx/IxI3), which determines 
the response of a fluid to a point force. When combined with integral equations 
specifying the total net force and torque on each particle, the result is a coupled set of 
two-dimensional integral equations that can be solved numerically for the singularity 
distributions on, and velocities and angular velocities of, each particle. The former are 
related to the rheological properties of the suspension. In particular, the contribution 
of the particles to the deviatoric stress tensor, (dP)), is 

( C ‘ P ’ )  = --n (S) 

where (. . .) denotes an average over all particles in the suspension. 
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The full boundary integral method approach, which was used by Youngren & 
Acrivos (1975) to study flow around isolated spheroids and cylinders, is valid for 
arbitrary particle shapes and concentrations. Unfortunately, such an approach is 
computationally intensive and impractical for more than a few particles. For fibres 
we can make this problem more amenable to numerical solution by using slender-body 
theory. 

The basic idea is that to understand the behaviour of fibre suspensions one does 
not need to know the entire force/area distribution over the fibre surface. One only 
needs to know the integral of the force around the perimeter at a given axial position 
on the fibre, F ( s ) .  The slender-body theory approximation reduces (3) to 

(cdP)) = -n (s) 

= -:n (1 [ (spF(s))  + ( ~ p F ( s ) ) ~  - :(Ssp - F ( s ) ) ]  ds) x (1 + O(A-'))  (4) 

where p is the fibre orientation vector and A is the aspect ratio of the fibres. We 
will show that slender-body theory can be used to consider fibre suspensions at 
concentrations up through semi-dilute. 

To develop the governing slender-body theory equations for fibre suspensions, we 
follow Batchelor (1970) and expand the one-fibre version of (2) about the major axis 
of the fibre 

uD(x)  = U ( X )  - P(x) = F ( s )  - H ( x  - X, - sp)ds x (1 + O(b /h ) )  . ( 5 )  

x, and b denote the fibre centre position and its characteristic width, respectively; h 
is the distance from the major axis of the fibre; P ( x )  is the undisturbed velocity at 
x. We have non-dimensionalized the velocities with 91, where 9 is the mean shear rate 
in the suspension, H ( x )  with 1/(8zpl), and P ( s )  with 8zpLjl. 

By definition, in the semi-dilute regime the average closest approach distance 
between any two fibres is much greater than b. Thus, most interfibre interactions at 
suspension concentrations up to and including semi-dilute can be well approximated 
by representing fibres as line distributions of Stokeslets. However, even at such 
concentrations, there is a finite probability of two fibres approaching within a distance 
of O(b).  In aligned suspensions, the probability of this is 0(4), and an O(1) distance 
along each fibre will be involved. As discussed by Batchelor (1971), the effect of such 
a close interaction will be to reduce to the separation speed of the fibres to << O($l)  
and produce an 0(1) increase in the fibre stresslets. Thus, only an O ( 4 )  error is 
introduced into the mean particle stresslet by neglecting such interactions. 

A similar analysis can be performed for isotropic suspensions using the lubrication 
theory results of Claeys & Brady (1989). In contrast to aligned suspensions, when 
two fibres are 'close', they will be so only over an O(b) distance along their axes. 
As a result, two fibres must approach much closer, within 0 (ebln(l/q5'/*)/A), where 
c << 1, before an O ( j l )  decrease in separation speed and 0(1) increase in the 
stresslets results. (The above assumes suspension screening on the length scales 
derived by Shaqfeh & Fredrickson (1990). This will be proven a posteriori in $5). The 
probability of such a close approach is 0 (€4 In( 1/4'/2)). Thus, again we expect the 
neglected close interactions in the semi-dilute regime to have a negligible effect on our 
results. 

Returning to the derivation of the governing equation, following Batchelor (1970) 
we can relate F ( s )  to the undisturbed flow field experienced by the fibre, u"(x), using 

.I 
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the method of matched asymptotic expansions. This yields an integral equation for 
F ( s ) ,  namely 

The velocity of the fibre and its angular velocity about its center are denoted by U 
and f2, respectively. As shown by Batchelor (1970), &s), which is non-dimensionalized 
by the characteristic fibre radius b, is related to the local perimeter of the fibre cross- 
section. For circular cross-sections, it is simply the local fibre radius. Equation (6) is 
valid for fibres whose cross-sections have a high degree of symmetry (see Batchelor 
1970). 

If other fibres are present in the suspension then we add their disturbance velocities 
to the right-hand side of (6) to describe the effect of the other axial singularity 
distributions on a given fibre. Note that the linearity of the creeping flow equations 
requires that the velocity evaluated on the surface of any fibre is just a superposition 
of the disturbance velocities created by all of the fibres plus the undisturbed velocity. 
The axial singularity distributions must be chosen such that the no-slip condition is 
satisfied on the surface of each of the N fibres. For fibre ‘f this yields 

N 

U j  + 8, x sp j  = um(xcj + s p j )  + 1 H(xCt + slpi - xc, - s p j )  - Fi(s’)ds’ 
i= 1 
i#j 

(7) 

Combining (7) with 

j = 1, ..., N ,  

which specify that each of the fibres has no net force or torque acting on it, respectively, 
yields a coupled set of integral equations. These can be numerically solved for the 
velocity, angular velocity, and singularity distribution of each fibre. 

Equations (7), (8), and (9) model interactions among N fibres in an unbound 
suspension. In order to model an infinite suspension, we use periodicity to replicate 
the N fibres in a unit cell throughout space. To determine the field disturbances 
created at any point in space due to a periodic distribution of Stokeslets we use the 
periodic solution of the Stokes flow equations, H P ( x ) ,  developed by Hasimoto (1959). 
This solution gives the disturbance velocity at a point due to a periodic distribution 
of identical Stokeslets and a net pressure gradient opposing the flow created by them. 
The latter is necessary to prevent divergence of the summation due to the slow (as 
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r - l )  decay of the disturbance created by individual Stokeslets. This is equivalent to 
the renormalization procedure discussed by O’Brien (1979) and Bonnecaze & Brady 
(1990). The periodic solution to the Stokes flow equations was evaluated using Ewald 
sums (Ewald 1921) to accelerate the convergence of the summations it contains. 

Making use of H P ( x ) ,  the periodically extended version of (7) becomes 

1 Hp(xCI  + s’p, - x,, - s p j )  - Fi(s’)ds’ 
N 

U j  + Rj x sp j  = 2rco(xCj + s p j )  + 
i= 1 
i # j  

(10) 

Equations (8), (9), and (10) were solved to find the fibre velocities, angular velocities, 
and stokeslet distributions, F j ( s ) .  Using the latter, (dP) )  can be determined from (4) 
and (1). 

The above problem formulation considers all fibre-fibre interactions within the 
slender-body theory approximation. A wide variety of fibre shapes can be considered, 
since changing the fibre shape only changes the function &s). Difficulties arise only for 
shapes such that d6(s)/ds > 0(1), since our ‘inner’ solution in the method of matched 
asymptotic expansions (see Batchelor 1970) is not correct for such shapes. This 
difficulty is greatest when such relatively rapid variations in the body cross-section 
occur near the ends of fibre, since the errors involved in matching ( 5 )  to the “inner” 
solution become O( 1)  or greater . For practical purposes, the only body shapes that 
cannot be simulated are blunt or nearly blunt-ended bodies. As will be shown in 95.2, 
the rheological properties of such suspensions are still well estimated by combining 
the results of simulations of non-blunt bodies and a simple analytical correction. Our 
Monte Carlo simulations can consider both linear and spatially periodic flow fields. 

3. Numerical solution of the governing equations 
In order to solve the governing equations, we first discretize the integrals using 

standard numerical integration techniques, 1.e. h(s)ds = c:fy wk(sk)h(sk), where 
Sk are the discretization points and wk(sk) are the weighting functions. Physical 
system parameters (the fibre shape, aspect ratio, orientation distribution, and volume 
fraction) and the unit cell parameters (its shape and the number of inclusions that 
it will contain) are specified and used to generate random, non-overlapping fibre 
positions and orientations. This reduces the discretized versions of equations (8), (9), 
and (10) to a set of N x (3M + 5 )  linear equations and unknowns. The unknowns 
for each fibre are three components of F ( s )  at each of the M discretization points, 
three components of U ,  and two components of R. There are only two linearly 
independent components of angular velocity. This is because the slender-body theory 
approximation neglects variations in the velocity along a fibre cross-section. Thus, we 
can specify R p = 0. The system of equations is solved by an LUD (Lower Upper 
Diagonal) matrix decomposition algorithm. We numerically integrate the resulting 
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stokeslet distributions to determine the fibre dipole tensors. These can be used with 
equations (1) and (3) to calculate the suspension stress. A typical simulation with 
M = 13 and 100 spheroidal inclusions in a cubic unit cell required about 5 minutes 
of CPU time on a CRAY C90 supercomputer. For each set of physical parameters, 
the equations were solved for 1&20 different particle configurations and the results 
were ensemble averaged. 

Even after taking advantage of the fact that H P ( x )  = Hp(-x) ,  our simulations 
still required approximately ( N  x M)2/2 evaluations of HP(x) .  These evaluations are 
computationally intensive, even though these are performed using Ewald sums, as 
discussed by Hasimoto (1959). We optimized this technique as a function of unit cell 
dimensions in order to minimize the number of calculations required to achieve a 
desired accuracy in H P ( x )  using an algorithm developed by Mackaplow (1995) which 
chooses the adjustable parameter, a, and the various limits of summation in the Ewald 
sums, as a function of unit cell dimensions in order to minimize the number of terms 
required to get convergence. (See also Note added in prooL p. 185.) 

In order to generate suspensions of fibres, a random number generator is first 
used to generate a fibre centre position within the unit cell, all positions being equally 
probable, and an orientation vector chosen from the appropriate distribution function. 
This fibre is placed in the unit cell. Then, the procedure is repeated, each time checking 
if the generated fibre position will overlap with a fibre that has already been placed in 
the unit cell or one of its periodic extensions. If it does, the proposed fibre is rejected. 
For isotropically oriented inclusions, since a fibre is less likely to overlap with a nearby 
fibre if the orientation vectors are similar (Doi & Edwards 1989), our procedure will 
lead to a certain degree of local orientation correlation within the unit cell. Since at 
the highest concentrations we study, the unit cells have dimensions less than 2 fibre 
lengths, there is a risk that this procedure will lead to a strongly preferred suspension 
orientations. To test for this, we divided the hemisphere of possible fibre orientations 
(taking advantage of the fore-aft symmetry of the fibres) into five equal-size regions. 
Then, histograms of the distributions were generated. We kept track of the maximum 
number of fibres in any one region. The average of this number was then calculated 
over the different configurations making up the ensemble average. This number, on 
average, was only 25% greater than the mean. More importantly, this percentage 
was constant over a wide range of suspension concentrations (and thus unit cell 
sizes). Thus, we conclude that our suspension generation method did not strongly 
bias the orientation distribution in our model suspensions. The procedure to generate 
model suspensions with the orientation distribution found in steady-state shear flow 
is somewhat more complicated and will be discussed in $5. 

Our method of generating model suspensions does not lead to configurations in 
which all non-overlapping configurations are equally probable. Such a distribution 
would be the equilibrium configuration for a Brownian suspension. However, for our 
non-Brownian system, it is not clear if this is ever a relevant distribution. 

Nevertheless, we must question how much our results are dependent on the 
local fibre orientation correlations and centre-of-mass distributions produced by 
our particular generation algorithm. Insight into this can be gained by considering 
the corrections to the dilute theory for two-body interactions and the semi-dilute 
theories of Shaqfeh & Fredrickson (1990). These theories explicitly consider particle 
interactions. They also ignore excluded volume effects. Thus, their predictions are 
based on no orientation correlations between particles. We note that it is the fibres 
closest to a given ‘test fibre’ that will have the greatest effect on its stresslet. The 
above theories predict the effect of particle interactions on the mean particle stresslet 
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to be nearly independent of particle orientation distribution. Thus, we believe that 
the effect of fibre interactions on the mean particle stresslet is independent of any 
local orientation correlations. We also see good agreement between the results 
of our simulations, the semi-dilute theory, and experimental data. Since all three 
systems produce particle configurations in different ways, they presumably have 
slightly different centre-of-mass distributions. Thus, the good agreement between the 
three sets of data suggests that our results are independent of the details of the 
centre-of-mass distribution. 

Based on the above, over the concentration range investigated, we believe our 
simulation results are independent of the details of the suspension generation al- 
gorithm. Only algorithms that produce grossly inhomogeneous distributions, or, in 
the case of attempting to produce isotropic distributions, macroscopically anisotropic 
distributions, should be considered suspect. 

When generating model suspensions of aligned fibres, overlap between any two 
fibres is tested by using straightforward geometrical considerations. For isotropic 
inclusions, we can characterize any point t on the surface of a fibre as a point in a 
local polar coordinate system, (@(t),  4(t), p(@(t) ,  4(t)). The coordinate system is defined 
such that the origin is at the centre of the fibre and the ends of the fibre correspond 
to 4 = 0 and 4 = 71. We can write this equation for any point q on another inclusion 
as well. Let us denote these two inclusions as I and ZI. These two points can both 
be converted to points in their respective local Cartesian coordinate systems, and 
using a coordinate transformation, we can find the distance between them. Finally, 
we use an unconstrained optimization algorithim (Amoeba, from Press et al. 1990) on 
the variables ~ 1 , ~ 1 , ~ 1 1 , ~ 1 1  to minimize this distance. If the minimum distance is zero, 
within our total roundoff error, we say that the two fibres overlap. 

Many different numerical integration algorithms were tested to solve the integral 
equations. Gauss-Legendre Quadrature was used predominately in the simulations 
since it generally converged with the least computational effort. Our simulations 
typically required 13 discretization points/ integral to get numerical convergence 
within 1% for non-dilute suspensions. This value of 13 was determined from studies 
in which the mean dipole of a given fibre configuration was monitored as the number 
of discretization points was varied from 7 to 25. 

Concerning the use of periodicity, we require that the unit cell size be sufficiently 
large that our results are not altered by fibres interacting with their own periodic 
extensions. We tested for these ‘box size’ effects by holding all of the physical system 
parameters constant (suspension volume fraction, particle geometry, etc.) but varying 
the size and shape of the unit cell, as well as the number of particles it contained. We 
then observed how this affected the ensemble-average particle dipole tensor. These 
results allowed us to choose the size and shape of our unit cell for our simulations 
such that they always have less than a 1% effect on the average dipole tensor. All 
of our unit cells are longitudinally rectangular with square cross-sections. This shape 
makes it easier to both optimize Ewald’s technique (Mackaplow 1995) and physically 
visualize geometric relationships between fibres in neighbouring unit cells. For the 
simulations of suspensions of aligned fibres, rectangular unit cells were used which 
were 6 times longer in the direction of fibre alignment than perpendicular to it. For 
simulations where the fibres were not perfectly aligned (e.g. isotropic suspensions), 
cubic unit cells were used. The number of fibres per unit cell varied from 50 to 175. 
Typically, 100 fibres per unit cell proved to be the best balance between minimizing 
computational effort per configuration and maximizing unit cell size. 



164 

4. Theoretical predictions 

(Batchelor 1971) 
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The most general form of (dp)) for an unbound fibre suspension can be written 

(0'' ') = [pUFIBRE ( ( p p p p )  - 6 (pp )  /3) : (e)] x (I + O(AP21n(A))). (11) 

pFzBRE is a dimensional constant that is a function of the physical parameters in 
the suspension. The error term results from neglecting the effect of gradients in the 
undisturbed flow field along the fibre cross-sections. To present theoretical predictions 
and our numerical results we will use a factor called Q, defined 

As we shall show, examining Q facilitates determining the screening behaviour of 
the suspension. Analysis of the equivalent versions of Q for heat and mass transfer 
through fibre suspensions were successfully used in our previous study (Mackaplow 
et al. 1994) to determine suspension screening lengths. Using (4), ( l l ) ,  and (12) we 
can relate Q to moments of the fibre orientation distribution function, the externally 
imposed flow field, and the numerically determined average particle stresslet : 

(13) Q x [ ( ~ p p p )  - 6 ( ~ p )  /31 : (e) = 3 (s) 
where we have used the non-dimensionalizations discussed in the previous section. It 
is valid to use a single scalar constant, Q, to relate (S) and [ (pppp)  - 6 ( p p )  /3] : (e) 
since over the ensemble average, both of these tensors will have the same tensorial 
form. We have verified this from our simulations. 

4.1. Dilute suspensions 
For dilute suspensions, pFIBRE (and therefore Q )  is not a function of the particle 
orientation distribution, thus the entire effect of the particle orientation distribution 
on (dP)) is explicitly accounted for by the factor of ( p p p p )  - 6 ( p p )  /3. In such 
cases, the theoretical analysis of Batchelor (1970) based on slender-body theory can 
be used to show that 

1 

2 [ W A )  + g(A)1 
QDilute = 

where g(A) depends on the fibre shape. In particular, for spheroids he showed 

1 
2 [ln(2A) - 1.51 QPpfi%icis = 

and for cylinders 

Dilute 1 ln2A +0.640 1.659 +- [ In 2A - 1.5 (In 2A)2 Qcy'inder = 

4.2. Corrections at O(n13) 

A dilute theory for aligned suspensions that takes into account two-body interactions 
is developed in the Appendix 
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The analogous theory for isotropic suspensions was developed by Shaqfeh & Fredrick- 
son (1990). However, due to an algebraic error, the coefficient multiplying the 
correction term was in error. The corrected theory is 

2-body 0.222n13 
QIsotropic = QDilute + ln3(2~)* 

This correction has not been previously presented and is also developed in the 
Appendix. Within the accuracy of the theoretical analysis, these correction terms are 
independent of fibre shape. 

4.3. Semi-dilute theories 
If the disturbance velocity created by a fibre in a suspension decays more rapidly than 
it would if no other fibres were present, screening is said to occur. This is discussed 
in more detail by Shaqfeh & Fredrickson (1990). According to cell models 

where x is the ‘screening length’, i.e. the average distance over which the velocity 
disturbance propagates. Two important geometric length scales in semi-dilute suspen- 
sions are the average interJibre spacing, ha,, the average distance that one must move 
perpendicularly from any point on the axis of a fibre before intersecting another 
fibre, and the average closest approach distance, h,,, between a fibre and its nearest 
neighbor. For aligned suspensions, both h,, and h,, have the same scaling with fibre 
volume fraction 4. In the semi-dilute regime 

Batchelor (1971) proposed that this would be the suspension screening length, leading 
to 

where C is an unknown 0(1) constant. 

suspensions, h,, scales very differently (Doi & Edwards 1989): 
For isotropic suspensions, although ha, scales in the same way as for aligned 

where we again note that n is the number density of fibres and 1 is the fibre half- 
length. In the semi-dilute regime h,, << ha”. Dinh & Armstrong (1984) proposed that 
the screening length would be approximately h,,, leading to the same prediction for 
aligned suspensions, (20),  but a very different one for isotropic suspensions 

Unlike previous investigators, who simply assumed a suspension screening length, 
Shaqfeh & Fredrickson (1990) used slender-body theory and a multiple scattering 
analysis, to find 

(22) 
1 Q I S k F  = 

In(l/+) + ln ln ( l /+ )+C~’+O ((I/In+)) 
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where each term in the series represents the effect of a certain class of fibre-fibre 
interactions. C” is an 0(1) constant that is a function of fibre shape and orientation 
distribution. Comparing (22)  to (19) yields x / b  - [(l/4)ln(l/4)]1’2 for all orien- 
tation distributions, assuming randomness in the centre-of-mass. By neglecting the 
[In( 1/4)] 1/2 part of this expression, we see that this analysis predicts that the screening 
length is approximately equal to the average interfibre spacing. This is in contrast to 
the prediction of Dinh & Armstrong (1984). 

As discussed by Mackaplow et al. (1994), some of the values of C” shown in 
Shaqfeh & Fredrickson( 1990) are incorrect. This results from Shaqfeh & Fredrickson 
(1990) assuming that the suspension volume fraction, 4, is 2nn13/A2, regardless of fibre 
shape, even though this is only true for cylinders. The corrected values for spheroidal 
fibres are 1.034 and 0.202 for aligned and isotropic suspensions, respectively. The 
corresponding values for cylindrical fibres are 0.1585 and -0.6634. 

V y x )  =i, 
1 0 0  
0 -1 0 ‘ X .  

0 0 0  

5.1.1. Aligned suspensions 

Figures l(a) and l(b) show plots of Q vs. n13 for fibres with an aspect ratio of 100 
that are all aligned with the principal axis of extension of the imposed flow field. For 
each set of simulations we have shown the mean and its 95% confidence interval. 

In figure l(a) we see that for n13 << 1, Q is constant. This means that the contribution 
of the particles to the stress in the suspension is directly proportional to the volume 
fraction of fibres. These results are in excellent qualitative and quantitative agreement 
with the dilute theory of Batchelor (1970). For n13 2 0(1), we see a positive deviation 
from the dilute theory, showing that fibre-fibre interactions are further enhancing the 
particle stress beyond the dilute theory prediction. This is in qualitative agreement 
with the version of the dilute theory that is corrected to take into account two- 
body interactions, developed in the Appendix. The semi-dilute theory of Shaqfeh 
& Fredrickson (1990) is qualitatively similar to our simulation data for n13 >> 1, 
but quantitatively lies 25%-30% below it. However, by adjusting the constant, C”, 
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FIGURE 1. Normalized extra particle stress, Q, of a suspension of aligned, spheroidal fibres with 
aspect ratio, A = 100, as a function of the suspension volume fraction. Shown are the predictions of 
numerical simulations, the dilute theory (with and without two-body corrections), and the semidilute 
theory of Shaqfeh & Fredrickson (1990) (both the original and modified versions). 

in the semi-dilute theory from the value given by Shaqfeh & Fredrickson (1990), 
1.034, to -1.25, and assigning a coefficient of 2.4 to the O(l/ln(l/4)) term, a much 
better quantitative agreement with the simulations is achieved. This is shown in 
figure l(b). As will be subsequently shown in figures 2, 3,  and 4, by utilizing these 
particular adjusted coefficients the semi-dilute theory is in an excellent quantitative 
agreement with the simulations for suspensions having a wide range of concentrations 
and particle aspect ratios. The need to adjust C" and keep the O(l/ln(l/4)) term 
corresponds to keeping classes of interparticle interactions that are neglected in the 
asymptotic theory. Thus, it appears the scaling predicted by Shaqfeh & Fredrickson 
(1990) is correct, but more terms in the series must be kept to get good quantitative 
accuracy. 

Of particular interest is the fact that the dilute theory with two-body corrections 
predicts, with small error, the behaviour of the suspension at concentrations up to 
n13 = 15. This is interesting because this theory was developed to be valid only in 
the dilute region. One indicator of the breakdown of the two-body theory is when 
the correcting term to the dilute theory become of the same order as the term it is 
correcting. This does not occur until n13 - O(ln2(2A)). For an aspect ratio of 100, 
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FIGURE 2. Normalized extra particle stress, Q, of a suspension of aligned, spheroidal fibres with 
aspect ratio, A = 50, as a function of the suspension volume fraction. Shown are the predictions 
of numerical simulations, the dilute theory (with and without two-body corrections), and the 
semi-dilute theory of Shaqfeh & Fredrickson (1990) (both the original and modified versions). 

ln2(2A) = 30. The ability of dilute theories that incorporate the effects of two-body 
interactions to predict suspension behaviour into the semi-dilute concentration regime 
was also observed in our previous study of heat transfer through suspensions of highly 
conducting fibres (Mackaplow et al. 1994). 

Figure 2 shows a plot of Q us. n13 for suspensions of fibres with an aspect ratio 
of 50. All of the fibres are aligned with the principal axis of extension of the flow 
field. As in figure l(b), we see that by using the adjusted coefficients in the semi-dilute 
theory of Shaqfeh & Fredrickson (1990), an excellent agreement between simulations 
and theory can be achieved for n13 >> 1. 

Figure 3 shows a plot of Q us. n13 for suspensions with a fixed inclusion volume 
fraction, 4, of 6.67 x . Again, there is a positive deviation from dilute theory 
for n13 2 O( 1). Note that Q approaches a constant in the semi-dilute regime. This is 
consistent with the prediction of the semi-dilute theory that the non-dimensionalized 
screening length in a semi-dilute suspension, X/b, is only a function of the volume 
fraction of the suspension. Whereas the published semi-dilute theory of Shaqfeh & 
Fredrickson (1990) quantitatively underestimates this value by approximately 20%, 
by utilizing the adjusted coefficients, excellent quantitative agreement is achieved. As 
for the previous sets of simulations, the dilute theory with two-body corrections does a 
good job of predicting the suspension rheology over the entire range of concentrations 
studied. 

In our previous study of heat and mass transfer through fibre suspensions, similar 
scalings of the suspension screening length in the semi-dilute regime were observed, as 
predicted by the theory of Fredrickson & Shaqfeh (1989). However, in this previous 
study we found that using the theoretically predicted value of C” and neglecting the 
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FIGURE 3. Normalized extra particle stress, Q, of a suspension of aligned, spheroidal fibres with a 
volume fraction of #J = 6.67 x lo-’, as a function of fibre aspect ratio. Shown are the predictions 
of numerical simulations, the dilute theory (with and without two-body corrections), and the 
semi-dilute theory of Shaqfeh & Fredrickson (1990) (both the original and modified versions). 

O(l/ln(l/+)) term resulted in much better agreement with the simulation data than 
in the present study. The reason for this discrepancy is still unknown. 

5.1.2. Isotropic suspensions 

Figure 4 shows the results for isotropic suspensions with a fixed inclusion volume 
fraction of 6.67 x lop5. Note that the error bars are much larger than for the aligned 
simulation data. This is because whereas for an aligned suspension a group of non- 
interacting particles will all have the same dipole tensor, for an isotropic suspension a 
particle’s dipole tensor strongly depends on its orientation with respect to the imposed 
external flow field. Thus, the slight differences in moments of the fibre orientation 
distributions between different suspension realizations contributes to the variance in 
the ensemble average. 

For n13 < 1 we see good agreement with the dilute theory. At concentrations 
greater than this, the simulations show a positive deviation from the dilute theory. Q 
approaches a constant in a manner very similar to the simulations of aligned suspen- 
sions shown in figure 3. This agrees qualitatively with the theoretical predictions of 
Shaqfeh & Fredrickson, which quantitatively lie 10%-15% below the simulation data. 
However, the simulation data are in qualitative and quantitative disagreement with 
the theoretical prediction of Dinh & Armstrong (1984) based on fibre disturbances 
being screened on the same length scales as the closest approach distances between 
fibres. This theory, which predicts Q to increase monotonically with increasing n13, 
greatly overestimates Q. 

As in the case of aligned fibre suspensions, using the adjusted coefficients in 
the semi-dilute theory of Shaqfeh & Fredrickson results in excellent quantitative 
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FIGURE 4. Normalized extra particle stress, Q, of a suspension of isotropic, spheroidal fibres with a 
volume fraction of 4 = 6.67 x lop5, as a function of fibre aspect ratio. Shown are the predictions of 
numerical simulations, the dilute theory (with and without 2-body corrections), and the semi-dilute 
theories of both Dinh & Armstrong (1984) and Shaqfeh & Fredrickson (1990) (both the original 
and modified versions). 

n13 

agreement between the theory and simulations in the semi-dilute concentration regime. 
The dilute theory that takes into account two-body interactions does a very good job 
of predicting the suspension rheology over the entire range of concentrations studied. 

5.1.3. Comparison of aligned and isotropic suspensions 
In order to compare the screening behaviour in aligned and isotropic suspensions 

more quantitatively, in figure 5 we have plotted the simulation results from figures 3 
and 4 on a common set of axes. We see very good agreement between the two sets of 
data. Using (19), this shows that the suspension screening lengths for these two very 
different fibre orientation distributions, aligned and isotropic, are approximately the 
same not only in the dilute regime, but at all concentrations up through semi-dilute. 

It is of interest to compare the screening length in a semi-dilute suspension of 
force-free fibres to that in a fibrous porous medium. These physical systems are 
very different. This is particularly so on length scales of the order of a fibre length. 
In one system the fibres are force-free and in the other they are not. However, 
Shaqfeh & Fredrickson (1990) predicted that on much smaller length scales the 
propagation of velocity disturbance will be screened in the same way in both systems. 
On these length scales, a disturbances will be mainly effected by the parts of the fibres 
closest to it. Thus, it might not experience the fibres as force-free objects, but objects 
with a net forces associated with them. This, of course, will not hold on length scales 
of the fibre length or longer. 

By finding the Green’s function for the Brinkman (1947) equation, Howells (1974) 
showed that the screening length in a porous medium is the square root of its perme- 
ability. Surveys of experimental and theoretical studies of the permeability of fibrous 
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FIGURE 5. Comparison of normalized extra particle stress, Q, of aligned and isotropic suspensions 
of spheroidal fibres with a volume fraction of 6.67 x lop5, as a function of fibre aspect ratio. Also 
shown is the modified version of the semidilute theory of Shaqfeh & Fredrickson (1990). 

n13 

porous media are presented by Koch & Brady (1986) and Jackson & James (1986). 
The results predict that in the limit of small volume fraction, the screening length in 
fibrous porous media, zPM,  is given by 

b is the characteristic fibre width. C P M  equals 1/8,1/4, and 3/20 for flow perpendicular 
to aligned fibres, parallel to aligned fibres, and through isotropically oriented fibres, 
respectively. The semi-dilute theory of Shaqfeh & Fredrickson (1990) for the rheology 
of fibre suspensions, (22), predicts 

eC"+B/ln(l/$) 1 /2 " = (  b 4 In f )  
Using the values of C" determined by our best fit to simulation data, -1.25, results 
in eC"+B(lI1n(l/$)) = 0.3 in the low volume fraction limit for both isotropic and aligned 
configurations. Thus our measured screening length in semi-dilute suspensions of 
force-free fibres is qualitatively and quantitatively very similar to those in fibrous 
porous media. This is consistent with the analysis of Shaqfeh & Fredrickson (1990). 
This is similar to the conclusion reached in our numerical study of heat and mass 
transport in fibre suspensions (Mackaplow et al. 1994). In that study it was shown 
that the screening length for heat transport through suspensions of highly conducting 
fibres, where no fibre is a net source nor sink of heat, is the same as that in the 
classical reaction-diffusion problem with fibres, where each fibre is a net sink of 
reactant. 
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5.1.4. Decay of point singularities 
In our simulations of suspension rheology, we tested for screening by studying the 

scaling of the fibre stress with fibre concentration and aspect ratio. We can also test 
for screening by studying the decay of the velocity field created by point singularities. 
The velocity induced by an isolated point force in a fibre-free fluid decays as l / r ,  
where r is the distance from the point force. If the velocity is screened on a length 
scale x, it will decay approximately as 

M .  B. Mackaplow and E .  S. G. Shaqfeh 

21 - e-'/X / r  (25) 

over length scales of 6 O(x) .  
One possible way to test for screening is to allow the undisturbed velocity field 

in a fibre suspension be that created by a periodic distribution of stokeslets. We 
could then analyse the velocity in the direction of the stokeslets, us, as a function of 
radial distance from the closest stokeslet. In this system, the adverse pressure gradient 
necessary for renormalization drives a flow in the opposite direction to the stokeslets 
in approximately half of the fluid. It follows, that even in the absence of particles, 
the velocity field will decay on length scales of approximately H/4, where H is the 
characteristic box length. Thus, in order to distinguish any suspension screening from 
the natural decay of the singularities, we would require H/4 >> 2. Unfortunately, since 
our computational effort - H9, for semi-dilute suspensions the largest we can make 
our periodic boxes is H = 8x, which is too small to distinguish suspension screening. 

At this point, one might wonder if our periodic boxes introduce an artificial screen- 
ing into our simulations of suspension rheology. They do not. This is because the 
aforementioned artificial screening is due entirely to the net adverse pressure gradi- 
ent required to renormalize the forcing stokeslets. In our simulations of suspension 
rheology, since the fibres are force free, there is no net adverse pressure gradient for 
renormalization. Thus, there is no artificial screening. 

Durlofsky & Brady (1987) studied the propagation of velocity disturbances in 
porous media by placing forcing functions at the centre of the unit cells. They 
compared the propagation of the velocity disturbance in both finite and periodically 
extended systems and found little difference at points within the unit cell. This 
suggests that we might be able to observe screening using a non-periodically extended 
system. To test this, we generated a finite suspension by placing 150 spheroidal 
fibres, aspect ratio = 663, such that all of the fibre centres were in a cubic unit cell. 
To not bias the distribution relative to an unbound suspension, fibre positions were 
rejected if they overlapped with any other fibres in the box or any of their periodic 
extensions (if they were to exist). The cell size, H = 2.81, corresponded to a suspension 
concentration of n13 = 7. Equation (24) predicts x = 0.351. 

Simulations identical to those discussed earlier were performed, except that the 
undisturbed velocity field was given by a stokeslet placed at the centre of the unit cell. 
The locations of 30 equally spaced concentric circles with radii ranging from x/15 to 
2x, in the plane perpendicular to the point force, were calculated. Along each of these 
circles, the velocity was calculated at 8 equiangularly-spaced points. This was usually 
done using 

N 

v(xc )  = H(xc  - xM) . F s  + 1 F i ( s )  * H(xc - xc,i - spi)ds (26) 

where H ( x )  is the Oseen tensor, and x M  is the centre of the unit cell. x~ may be 
any one of the 240 points at which we calculate the velocity, and the axial stokeslet 

i= I 
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FIGURE 6. Decay of the velocity, vz, created by a point force in a unit cell as a function of radial 
distance, r ,  in the plane perpendicular to the point force. The simulation results for unit cells 
containing both aligned and isotropic fibre suspensions are shown. The unit cell contains 150 
spheroids having an aspect ratio of 663, for an effective concentration of n13 = 7. Also shown are 
the decay of an isolated stokeslet, and stokeslets screened on length scales of xsim and xDa. 

distributions Fi ( s )  were calculated from the simulation. F ,  is the forcing stokeslet. 
We have taken the centre of the unit cell to be the origin. Approximately 1 out of 
every 400 values of xG lay within 5b of a fibre axis. At these points the velocity was 
approximated as the fibre velocity at the closest axial position. Both aligned fibres 
(aligned in the direction of the stokeslet) and isotropic fibre orientation distributions 
were considered. For each orientation distribution, the results were ensemble averaged 
over 10 different particle realizations. 

Figure 6 shows the mean suspension velocity in the direction of the stokeslet, (u,), 
as a function of radial distance away from the stokeslet, r. Also shown are the 
velocity profiles of an unscreened stokeslet, and stokeslets screened at both the length 
scales predicted by our simulations of rheological properties, xsim, and that predicted 
by Dinh & Armstrong for an isotropic suspension, xDA.  We see that the velocity field 
in the fibre suspension decays much more rapidly than that of an isolated stokeslet. 
The length scale of this screening is approximately xsim in both aligned and isotropic 
suspensions. Although the decay of the velocity field is slightly faster in the isotropic 
suspensions, it is not nearly as fast as predicted by Dinh & Armstrong (1984). The 
screening behaviour is more evident in figure 7, where we have u,(r)  x r as a function 
of r. 

In figures 6 and 7 we observe a slower decay of the velocity field at radial distances 
greater than approximately xsim/2. This contrasts with the continued exponential 
decay predicted by equation (25). This is because for length scales 2 O(x) ,  equation 
(25) only holds for a fixed porous medium. In such, the inclusions exert a net force 
and damp the imposed velocity field at all length scales. In contrast, in a suspension 
of force-free inclusions, the inclusions serve to transfer momentum over the length 
scale of the inclusions and eventually the medium appears to be a viscous fluid. Thus 
after the initial rapid decline, the velocity field decays slower than l / r  over length 
scales of O(1). 
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FIGURE 7. Decay of the velocity field multiplied by radial distance, r x v z ,  created by a point force 
in a unit cell as a function of radial distance, r ,  in the plane perpendicular to the point force. The 
simulation results for unit cells containing both aligned and isotropic fibre suspensions are shown. 
The unit cell contains 150 spheroids having an aspect ratio of 663, for an effective concentration of 
n13 = 7. Also shown are the decay of an isolated stokeslet, and stokeslets screened on length scales 
of Xsim and X D A .  

5.2. Comparison of simulation results to experimental data 

We will now compare our simulations to published experimental data. However, all 
these studies involved suspensions of cylindrical fibres. We could not directly simulate 
suspensions of cylinders. Instead, we simulated suspensions of spheroids having 
the same aspect ratios and n13 value as the suspensions used in the experiments. 
These simulation results were then scaled using the ratio of the dilute theoretical 
prediction for cylinders (equation (16)), to that for spheroids (equation (15)). This 
physically corresponds to an isolated cylinder having the same particle stresslet as a 
spheroid with a larger aspect ratio, A , f f ,  where Aeff  > A .  However, the percentage 
enhancement of the stresslet due to interparticle interactions will still depend only 
on n13. We have based this conversion method on the findings of our analogous 
study of heat and mass transport through fibre suspensions (Mackaplow et al. 1994), 
where converged numerical results were obtained for both spheroidal and cylindrical 
fibres. 

We have not attempted comparisons to falling-ball rheometry studies, such as those 
by Milliken et al. (1989). Such investigations determine the ‘effective viscosity’ of 
fibre suspensions by measuring the fall speed of a sphere sedimenting through the 
suspension. The flow field created by a sedimenting sphere will induce a local fibre 
ordering that decays away from the sphere. Since it is the fibres closest to the sphere 
that will have the greatest effect on its fall velocity, comparisons of these results to our 
simulations of isotropic suspensions are not meaningful. Additionally, the numerical 
simulations of falling-ball rheometry by Harlen, Sundarajakumar & Koch (1995) 
show that even in the dilute regime, fibre contacts, which we neglect, substantially 
increases the ‘effective viscosity’. We note this was not found to be the case in sheared 
suspensions. 
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e(x) = ~ ( x . 1 )  

Investigators A 
P & B (1990) 50 

50 
50 

W (1 970) 57 
M & M (1974) 282 

586 
586 

1259 

1 0  0 
0 -; 0 
0 0 -; 

4 (%I 
0.14 
0.30 
0.90 
1.3 

0.930 
0.099 
0.287 
0.096 

n13 

0.56 
1.2 
3.6 
6.7 

118 
54 

157 
242 

Dilute theory 
1.3 
1.6 
2.9 
4.4 
40 
16 
45 
60 

Semi-dilute 
theory 

1.2 
1.5 
2.7 
4.1 
53 
18 
57 
76 

Experiments 
1.3 
1.5 
3.4 
9 

52 
19 
75 
60 

Simulations 
1.3 
1.8 
3.3 
5.1 
60 
20 
65 
88 

TABLE 1. Extensional viscosity of suspensions of cylindrical fibres extruded through a circular, 
horizontal orifice, relative to that for the fibre-free liquid. Shown are the experimentally determined 
values for the investigations listed (Pittman & Bayram 1990; Weinberger 1970; Mewis & Metzner 
1974), as well as the predictions of numerical simulations, the dilute theory, and the semidilute 
theory of Shaqfeh & Fredrickson (1990). 
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Bayram (1990) noted the severity of the instability for each experiment performed, 
we have only compared our simulations to their experiments for regular jets. This 
probably accounts for the generally better agreement between their experimental data 
and our simulations as compared to the experimental data from other investigators. 
Other probable sources of the discrepancy between experiment and simulations are : 
(i) incomplete alignment and dispersion of fibres, (ii) jamming of the extrusion orifice 
by fibres, (iii) polydispersity of fibre aspect ratios, and (iv) the jet diameter being of 
the same order as the average interfibre spacing. These are discussed in more detail 
by Pittman & Bayram (1990). 

5.2.2. Isotropic jibres in shear $ow 

Bibbo (1987) measured the time evolution of the shear viscosity in an initially 
isotropic fibre suspension using the cup-and-plate rheometer. This device consists of 
a cylindrical cup with a force transducer on the bottom and a rotating plate on the 
top. The zero strain (i.e. time=O) measurements correspond to an isotropic suspension. 
This is because before the onset of flow the suspensions were isotropic. This was 
evinced by transient measurements of the shear viscosity and the normal stress in the 
suspension and a comparison of these values to the same transient measurements in 
suspensions with known orientation distributions. We shall be concerned with the 
shear viscosity, which is proportional to the rsro component of the stress tensor, where 
r and 0 are the radial and flow directions, respectively. 

Since we compare these experimental results to the predictions of both theory and 
simulations for fibres in planar shear flows, the limitations of such a comparison 
should be mentioned. First, since the radius of the cup is of the same order as the 
length of the fibres, the fibres experience a non-homogeneous velocity profile. Addi- 
tionally, since the radius and height of the vessel are of the same order, the ‘edge effects’ 
on the velocity profile at the inner radial wall of the vessel might not be negligible. 

There is one other experimental consideration that one might initially consider to 
be important, but is not. If we consider a cylindrical coordinate system ( z ,  8, r )  with 
its origin at the centre of the cup base, neglecting edge effects the velocity field in the 
rheometer is 

where LL) is the angular velocity of the rotating plate, and H and R are the height 
and radius of the cup, respectively. Converting to a local Cartesian coordinate system 
centred at any fibre where 1, 2, and 3 are the axial, flow, and radial directions, 
respectively, we see that unlike a cone-and-plate rheometer that induces shear only 
in the (1,2)-plane, 

~ v ~ ( x ) / ~ x I  > 0, d ~ 2 ( ~ ) / d ~ 3  = 0, 

making use of (27) we see that a cup-and-plate rheometer induces shear in both the 
(1,2) and (2,3)-planes 

d V 2 ( X ) / d X I  > 0, dv2(x)/dx,  > 0. 

Both planes of shear can can give rise to particle stress. Owing to the linearity of 
the creeping flow equations, we can separate the particle stress, ( r $ ) ) ,  into the parts 
induced by each of the two separate flows. From (11) we see that these two parts 
are proportional to (p1p1p2p2)  and (p1p2p2p3),  respectively. Since the latter vanishes 
for an isotropic suspension, we see that shear in the (2,3)-plane will not contribute to 
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FIGURE 8. Shear viscosity of an isotropic suspension of cylindrical fibres with aspect ratio, (a) 
A = 33, and ( b )  A = 51, relative to that of the fibre-free liquid, as a function of suspension volume 
fraction. Shown are the experimentally determined values of Bibbo (1987), and the predictions of 
numerical simulations, dilute theory (with and without two-body corrections), and the semi-dilute 
theories of both Dinh & Armstrong (1984) and Shaqfeh & Fredrickson (1990). 

n13 

c12, so comparing the experimentally measured shear viscosity to simulations having 
only shear in the (1, 2)-plane is valid. 

In figures 8(a) and 8(b) we have plotted the experimentally determined shear vis- 
cosity of the suspension relative to that of the suspending fluid, q/qo, for suspensions 
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of fibres with aspect ratios of 33 and 51, respectively. Various theoretical predictions 
are also shown. These theories make use of the fact that for an isotropic suspension 
(pip,) = &,/3 and (PlPJPkPI)  = (6&I + &kdJI + d d j k )  /15, where we have temporarily 
switched from Gibbs to indicia1 notation. For the semi-dilute theory of Shaqfeh & 
Fredrickson (1990), we have used C” = -0.6634. This is the theoretically predicted 
value listed in $4 for suspensions of isotropically oriented cylinders. 

Overall, we see excellent agreement between the simulations and experiments. This 
implies that our simulations are capturing the important physics of the system and 
that the effects of streamline curvature and the no-slip condition on the outer wall 
are small. The semi-dilute theory of Shaqfeh & Fredrickson (1990) qualitatively 
agrees with the simulations and experiments while quantitatively underestimating 
shear viscosities by about 10%. The semi-dilute theory of Dinh & Armstrong (1984) 
qualitatively disagrees with these results and quantitatively greatly overestimates the 
shear viscosities. 

Only for the most concentrated suspensions in figure 8(a), corresponding to fibres 
with an aspect ratio of 33 and n13 2 9, is the agreement between experiment 
and simulation poor. By definition, in the semi-dilute concentration regime, the 
average closest approach distance between any two fibres is much greater than the 
characteristic fibre width. Using the results of Doi & Edwards (1989) for isotropic 
suspensions, this corresponds to a concentration restriction of A/(27cn13) >> O(  1). 
However, of the different suspensions simulated in figure 8, those corresponding to 
the aforementioned subset have the smallest values of A/(27cn13), A/(27cn13) < 0.7. 
This demonstrates that the suspension concentrations are well beyond the semi-dilute 
regime. Thus, there are close fibre-fibre interactions which are not captured by 
our slender-body theory approximation and therefore we underestimate the effective 
viscosity. This may have been anticipated considering that the error involved in 
slender-body theory in approximating fibre-fibre interactions, as shown by ( 5 ) ,  is no 
longer negligible when there are many close fibre-fibre interactions. 

Claeys & Brady (1993) have used Stokesian dynamics simulations to determine the 
shear viscosity of suspension of spheroidal particles with an aspect ratio of 50. For 
each of their published simulation results, holding n13 fixed, we have extrapolated 
to results for suspensions of spheroids with an aspect ratio of 51. We do this in a 
manner similar to the cylinder-spheroid conversion discussed earlier (although this 
affects the results by less than 1’%0). This allows us to directly compare their results to 
the predictions of our simulations for spheroids with aspect ratios of 51. In figure 9 
we have plotted S$) as predicted by both our simulations, Stokesian dynamics, and 

the dilute theory. From (3) we see that is the average contribution of a particle 

to the suspension shear viscosity. Thus, changes in S,, as a function of suspension 
volume fraction are a direct measure of the effect of fibre-fibre interactions. 

In figure 9 we see that our simulations show increasing positive deviation from the 
dilute theory with increasing suspension concentration, while the Stokesian dynamics 
simulations show no such trend. Although it is difficult to draw firm conclusions 
owing to the scatter of the data and the limited concentration range investigated by 
the Stokesian dynamics simulation data, it appears that over the concentration range 
investigated Stokesian dynamics fails to capture the effect of fibre-fibre interactions. 
For similar values of n13, but with particles of aspect ratio 20 or less, Stokesian 
dynamics simulations do capture the effect of fibre-fibre interactions, apparently with 
increasing ability as fibre aspect ratio decreases. A probable cause for this is that 

0 
0 

( ‘p’> 
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FIGURE 9. Average non-dimensionalized particle stresslet in an isotropic suspension of spheroidal 
fibres with aspect ratio, A = 51, as a function of suspension concentration. Shown are the predictions 
of numerical simulations, Stokesian dynamics simulations (Claeys & Brady 1993) and the dilute 
theory. 

n13 

Stokesian dynamics effectively represents the disturbance created by a particle using 
the first two terms of the multipole expansion of (2) about the particle centres. It 
appears that with increasing particle aspect ratio, higher-order terms in the multipole 
expansion become increasingly important. Thus, the ability of the two-term expansion 
to capture fibre-fibre interactions decreases. 

5.2.3. Steady-state shear viscosity 
The steady-state fibre orientation distribution in shear flows is a function of both 

particle aspect ratio and suspension volume fraction. Stover, Koch & Cohen (1992) 
have experimentally studied this for particles having aspect ratios of 16.9 and 31.9 
over similar ranges of concentrations as those investigated by Bibbo (1987). Isolated 
fibres in a shear flow rotate in one of a continuum of Jeffrey orbits, each denoted by 
an orbit constant C. The orbit in which an isolated particle finds itself is determined 
by its initial orientation, while the nature of the orbit is a function of the effective 
aspect ratio of the particle. Stover et al. (1992) determined that in the semi-dilute 
regime the time-averaged nature of the Jeffrey orbits was changed only slightly, but 
the steady-state distribution of orbit constants, p ( C ) ,  was very different from that 
expected for an initially isotropic suspension. The latter is well described by the 
anisotropic rotary diffusivity model of Rahnama et al. (1993) 

4 C R  

(4C2R + 1)3’2 
P(C) = 

where R = 2.4 gives the best fit to experimental data. Using (28) and equations 
describing the Jeffrey orbits (Stover et al. 1992), we numerically generated suspensions 
having the proper steady-state orientation distributions for fibres in shear flow. Unlike 
our algorithms for the generation of aligned and isotropic suspensions, if a generated 
fibre overlapped an existing fibre, we did not reject both the centre position and 
orientation, but rather just generated a new centre position to complement the 
existing orientation. Since a fibre is more likely to avoid overlapping with a fibre of 
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FIGURE 10. Steady-state shear viscosity of a suspension of cylindrical fibres with aspect ratio, 
A = 33, relative to that of the fibre-free liquid, as a function of suspension volume fraction. Shown 
are the the experimentally determined values of Bibbo (1987), and the predictions of numerical 
simulations, the dilute theory, and the semi-dilute theory of Shaqfeh & Fredrickson (1990). 

similar orientation, and at steady state most fibres in shear are aligned in the flow 
direction, such a modification to our algorithm is necessary to prevent biasing our 
distribution. 

In figure 10 we have compared our simulated results for the steady-state shear 
viscosity for suspensions of particles having aspect ratios of 33 to the predictions of 
the dilute theory and the semi-dilute theory of Shaqfeh & Fredrickson (1990). Both 
theories make use ( ~ 1 ~ 1 ~ 2 ~ 2 )  = 0.100, as determined from our generated orientation 
distributions. For the semi-dilute theory, since the O(1) constant has not been 
determined for this particular orientation distribution, we set it equal to zero. 

In figure 10 we see fairly good agreement between simulations and experiments up to 
concentrations of approximately n13 = 7, above which the simulations underestimate 
the experimentally determined shear viscosity. Based on the previously discussed 
results for isotropic suspensions, and the fact that by symmetry ( ~ 1 ~ 1 ~ 2 ~ 3 )  = 0, we 
believe that the curved streamlines, no-slip condition on the outer wall, and shear in 
the (2, 3)-plane, all present in the experimental apparatus, had a negligible effect on 
the shear viscosity and would not account for the discrepancy between simulation 
and experiments. 

The likely sources of the discrepancy can be divided into two classes: those 
which are equally important at all suspension concentrations and those which are 
more important at higher concentrations. Concerning the former, there are three 
likely factors. First, a fibre oriented in the flow direction will make a contribution 
to the suspension stress tensor 0 (lnA/A2) smaller than one which is not. Since 
the contribution to the stress of the former is driven entirely by gradients in the 
undisturbed velocity along the cross-sections of the fibres, it will not be captured by 
the slender-body theory approximation used in the simulations. For fibres in shear 
flow at steady state, only an 0(1/A) fraction of the fibres are not approximately 
aligned in the flow direction (Stover et al. 1992). Thus, the error induced by the 
slender-body theory approximation in calculating the steady-state shear viscosity is 
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O(ln A / A ) .  This is not necessarily small for the suspensions under consideration, since 
(lnA)/A fi: 0.11. Secondly, when comparing suspensions of the same aspect ratio, 
( p 1 p l p 2 p ~ )  for our numerically generated suspensions was about 10% smaller than the 
experimentally determined values of Stover et al. (1992), due to small changes in the 
Jeffrey orbits induced by fibre interactions. Finally, (p1p1p2p2)  in the experiments of 
Bibbo (1987) were probably even larger than those measured by Stover et al. (1992), 
since the effect of the aforementioned shear in the (2, 3)-plane would be to rotate 
fibres into the (1, 2)-plane. 

It is possible to suggest a reason for the relatively poorer agreement between 
simulations and experiments for n13 > 5. We expect the average closest approach 
distance in the suspension will be between those for aligned and isotropic suspensions. 
However, from an analysis similar to that used by Doi & Edwards (1989), we expect 
the O ( l / A )  fraction of the fibres that are not aligned in the flow direction will 
experience a closest approach distance of the same order as that in an isotropic 
suspension. Since it is these few fibres that make the dominant contribution to 
(c!;’), and we see a decline in the agreement between simulations and experiments 
at approximately the same concentration as for isotropic suspensions, we suggest that 
the discrepancy is due to slender-body theory underestimating the effects of close 
fibre-fibre interactions. 

6. Conclusion 
For suspensions of rigid, non-Brownian fibres at zero Reynolds number, hydrody- 

namic fibre-fibre interactions have a negligible effect on the volume-averaged stress 
tensor for n13 < 1. At n13 - O(l), independent of any particular fibre aspect ratio or 
suspension volume fraction, fibre-fibre interactions begin to enhance the stress in the 
suspension and it undergoes a transition to the semi-dilute regime. This transition, 
as well as the suspension behaviour well into the semi-dilute regime, is well predicted 
by dilute theories that take into account two-body interactions. In the semi-dilute 
regime, the dimensionless fibre disturbance screening length, x/b,  is only a function 
of suspension volume fraction. It is approximately the same for both aligned and 
isotropic suspensions, even though the latter contain many more close fibre-fibre 
interactions than the former. This is in qualitative agreement with the theoretical 
prediction of Shaqfeh & Fredrickson (1990), but disagrees with that of Dinh & Arm- 
strong (1984). Our conclusion is supported by the experimental work of Bibbo (1987), 
who measured the zero-shear viscosity of an isotropic suspension. Bibbo (1987) had 
hypothesized that rapid alignment of the suspension caused an initially isotropic 
suspension to show the same screening behaviour as that expected for an aligned 
suspension, even at very short times. Our numerical simulations have shown that 
partial alignment of the suspension is not necessary for this screening behaviour to 
occur. The quantitative agreement between our simulations and the semi-dilute theory 
of Shaqfeh & Fredrickson (1990) can be greatly improved by adjusting the value of 
C” in the theory to -1.25 and retaining the O(l/ln(l/+)) term with a coefficient of 
2.4. This physically corresponds to keeping classes of fibre interactions neglected by 
the theory. The above result is used to show that the suspension screening lengths are 
very similar to those in fibrous porous media having the same fibre volume fraction. 
This holds for both aligned and isotropic orientation distributions. We also directly 
verify suspension screening by studying the decay of the velocity fields created by 
individual Stokeslets in fibre suspensions. 
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Comparison of our numerical simulations to experiments and theoretical predic- 
tions for steady state shear and extensional viscosities also support the conclusion 
that the semi-dilute suspension screening length is independent of the fibre orienta- 
tion distribution in the suspension. This conclusion is powerful since it allows one 
to convert knowledge of the transient fibre orientation distribution in a suspension 
to the transient rheological properties of the suspension. This is particularly valuable 
in a rapidly changing flow field where steady-state conditions are not reached since 
direct measurement of transient rheological properties are difficult. 

Slender-body theory will faithfully capture the effect of fibre-fibre interactions 
on the hydrodynamic stress in an isotropic suspension for concentrations up to 

x A / 5 ,  beyond which it underestimates their effect. Interestingly, although the 
average steady-state closest approach distance between fibres in shear flow is much 
larger than for those in an isotropic suspension, the few fibres that make the dominant 
contribution to the suspension stress experience closest approach distances that are 
approximately the same as those in an isotropic suspension. Consequently, in such 
flows the same upper concentration limit for the ability of slender-body theory to 
capture the full effect of fibre-fibre interactions is observed. This limit is presumably 
much higher in aligned suspensions, since for a given suspension concentration the 
average closest approach distance is much larger. 

Our algorithm can easily be modified to determine the sedimentation characteristics 
of fibre suspensions. This is done by changing the right-hand side of (8) to specify 
that the net force exerted by a fibre on the fluid is equal to the gravitational body 
force exerted on the fibre. Monte Carlo and dynamic studies of fibre sedimentation 
are in progress. 
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Appendix. Calculations of the correction to the effective viscosity of a fibre 
suspension for two-body interactions 

A.l. General development 

A method for calculating expressions for the effective viscosity in a random dispersion 
of rigid fibres in a Newtonian fluid which accounts for multi-body interactions has 
been carefully presented by Shaqfeh & Fredrickson (1990). We shall refer to this 
publicaton for the details and only outline the mathematical steps necessary to derive 
the results quoted in 54 - namely the first correction to the predicted effective viscosity 
of a fibre solution in the dilute limit which accounts for two-body interactions. 

The general theory developed by Shaqfeh & Fredrickson (1990) for the wavenumber- 
dependent propagator, Gjk(q)  in suspensions of randomly positioned fibres can be 
summarized in the following set of integral equations : 



F(x ,  Y )  = j O b ) j O ( Y )  - j o b  - Y ) ,  

H(x ,  Y )  = 3 j l ( x ) j l ( ~ )  + ~ o ( x ) ~ o ( Y )  - ~ O ( X  - Y ) ,  

(A 5 )  

(A 6 )  
where Q = q / q  and where j o  and j l  are the spherical Bessel functions of zeroth and 
first order respectively. The vector p is the unit vector representing the orientation 
of an individual particle and the orientation distribution of the particles is only 
important in the calculation of the self-energy, Ci j .  For aligned particles, we define 
the particles to be oriented in the common direction p and then 

Zij = n Qij(1q * P ,  lq * P )  (A 7 )  

where n is the number density of particles. For isotropic suspensions, 

dPQi j ( lq ’P , lq ‘P) .  (A 8) - 4rc 

Finally, since Tij(lq - p ,  lq’ p )  is a symmetric tensor described in terms of the single 
unit vector p ,  we can also decompose Qij( lq  p ,  Zq’ * p )  into Q1 and Q2 through the 
expression 

Qij(l4 * P ,  lq’ * P )  = Ql(lq * P ,  lq’ 0 P)PiPj + Q2(14 * P ,  lq’ * P)(&j - P i P j ) .  (A 9) 

A.2. Aligned jibres 
As demonstrated by Shaqfeh & Fredrickson (1990), the expression for pfibre for 
aligned suspensions can be determined from the following formula : 

where 5 = lq - p .  Thus we need only concentrate on the asymptotic form for Q1(5 ,  5 )  
in the limit n13 + 0 to determine the dilute form for pfibre.  

In (A2) for Qij( lq  - p ,  lq’ * p )  the first term on the right-hand side is the transfer 
matrix in the absence of particle interactions Tij(lq - p ,  lq’ * p )  and the second integral 
term represents the multi-body interactions and their effect on transfer. To take into 
account the first reflection interactions on this transfer we need only consider the 
first iterate of this equation in the limit of n13 + 0 (with the limit taken assuming 
q - O(l/l)) .  This gives the result 

1 
Qij( lq*p,  1 d . P )  = Tij( lq .P, lq’*P)+ /dkTik( lq*p ,  ~k.~)[G;,(k)lT/j(lk.p,~q’.p), 

(A 11) 

(A 12) 

where G;, = lim,13,0[Gkl - I k l ]  and where 

Zi j  = nTij(lq ‘ p ,  lq ap ) .  

We need only determine Q1 in order to find pfibre, so we consider the somewhat 
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Noting that 

and, similarly 

we can substitute our integral expression for Ql(5, 5) into the definition of pfibre and 
using the limits defined above, we obtain 

l i rn td ' (5 ,  lk - p )  + -4jl(lk . p )  

limt,oF(lk - p ,  5) + -5jl(lk . p )  

(A 14) 

(A 15) 

2n13p21 f dkj:(lk .p)pkG;,pl(k) 
n In( 2A) 

p fibre - 4npn13 
3 In( 2A) 

where the first term on the right-hand side is the one-particle result and the sec- 
ond term is the correction due to two-particle interactions. Note that this method 
rigorously takes into account all first reflection interactions on the value of pf ibre .  
These give the leading order correction in the dual limit n13 + 0 and A + 1 (or 
more precisely, l/ln(2A) 4 1). To complete the derivation we need only determine 
pkGLipl(k). If we examine the Green's function calculated by Shaqfeh & Fredrickson 
(1990) for aligned fibre suspensions, then it can be shown that 

(A 17) 
4 ~ ~ 1  F(kx, kx)( 1 - x ~ ) ~  + 2H(kx, kx)x2( 1 - x2) 

PkG;ipdk) nln(2A) p2k4 

where x = lk - p .  
manipulating gives 

Substituting this result back into the integral for p f i b r e  and 

[l - ji(kx)]j;(kx)(l - x2)2 2jt(kx)[l - j;(kx) - 3j?(kx)]x2(1 - x2) 
k2 

+ J = l m d k l l d x  k2 

The integral J was completed numerically and found to have the value J = 0.01718. 
With this numerical result we obtain the quoted value of QAiigned found in $4.2. 

A.3. Isotropic suspensions 
Interestingly the equation for pfibre derived above in terms of G;, remains the same 
if the suspension is isotropic, but, of course, the value of G;, changes. This equation 
physically represents the fact that the dipole or stresslet correction on a given fibre 
occurs due to the average reflected field from the surrounding fibres. Thus, the 
method of calculating this change does not depend on the orientation distribution, 
but the form of the reflected field does. 

Turning then to the calculation of G;, for isotropic suspensions, we have that the 
self-energy no longer depends on any preferred direction, and takes the form 

(A 19) 

2-body 
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Referring to Shaqfeh & Fredrickson (1990), we have that 

where B(k) can be approximated in the dilute limit as 

B(k) fi: - nPn' 1' dxF(kx, kx)( 1 - x 2 )  + 2H(kx, kx)( 1 + x2). (A 23) ln(2A) -1 

Substituting our expression for G;, back into the integral for pfibre gives (after some 
manipulation) 

where 

(A 25) 
2j:(ky)( 1 - ji(kx) - 3jf(kx))( 1 - y2)( 1 + x 2 )  

k2 
+ 8  

Note that the correction term (the second term in the expression for pf ibre)  is exactly 
a factor of 3 larger than that calculated by Shaqfeh & Fredrickson (1990). The 
integral J was numerically calculated by Shaqfeh and Fredrickson to have the value 
J = 0.1518 (this was verified again in this work). Substituting this numerical result 
into our expression for pfibre reproduces the value of QIsotropic quoted in $4.2. 

Note added in proof 
For the simulations presented in $5.1.4, H p ( x )  was evaluated using the grid point 
interpolation algorithm developed by Mackaplow (1995). This consists of first pre- 
evaluating H P ( x )  at lo6 non-uniformly spaced points in 3-space. Then, any other 
values of H P ( x )  required for the simulations are determined from these. This algo- 
rithm reduced the computational effort required for evaluating HP (x) 300 fold, while 
introducing only a mean error of only 3% into each of the tensor elements. 

2-body 
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